
Apple Confidential -- Need to Know
V0 Performance Strategy

February 23, 1993
Philip Koch

SUMMARY

We've now implemented most of the major pieces of V0, and have it working.  The next major 
phase of software development is to accelerate and tune the system to make it fast.  The D4 build
incorporates most of the accelerations that we originally identified as being important, but 
preliminary data suggests -- to nobody's surprise -- that this first set is not enough to achieve our 
performance goals.  We need to identify and port more code.  We've learned a great deal from 
what we've done so far, and have a plan in place which we're confident will allow us to reach the 
program's performance goals.  But its now clear that performance work will have to continue 
throughout the Alpha cycle, and we've identified a significant issue:  Our current quality 
resources, although adequate to test the originally identified accelerations, are definitely not 
adequate to write the tools and test the additional parts of the system we now know we'll have to 
port.  Its going to be much easier to port than to test.  This is a problem.

GOALS AND BASELINE DATA

Our performance goals are twofold:

1. For emulated applications, the goal is to achieve perceived performance at least as good as 
equally priced 68k-based Macintosh CPUs available at the time of introduction.  
Since we believe 25MHz 68040s will be selling in PDM's price range in January 94, this 
means we're measuring ourselves against the Quadra 700.  

2. For native applications, the implicit (but hitherto unstated) goal of the program is to achieve 
performance "significantly" better for 601 applications compared to existing 68K and Intel 
applications.  Marketing is still working on defining what  "significant" means for future 
PowerPC customers.

The metrics that we use to define our goals and to measure our progress, both for emulated and 
native applications, are based on user scenarios critical for PowerPC targeted markets.  Dave 
Matzer and Marketing have defined for each of these applications a VU script which reflects the 
way average customers are using them. These scripts have been done to reflect both "user 
perceived performance" and "processor intensive" operations.  Sample output from one of the 
scripts, comparing the speed on a IIci, a Quadra 700, and on PDM is attached.

We believe a 50MHz 601 is roughly 3x faster than a 25MHz 68040 for integer benchmarks such 
as ISpec, and that at 66MHz the 601 should be about 4x faster.  The emulator runs at about 10% 
of full native speed, so that unaccelerated emulation on a 66MHz PDM should run about 40% as 
fast as a Quadra 700, or a little faster than a IIci.  Thus we need to port substantial parts of the 
toolbox native in order to meet our goals.

The following graph shows the effect of Amdahl's Law on performance, measured as a function 
of the total percent of executed code which is running native.  Thus the graph shows that at 0% 



Apple Confidential -- Need to Know
native we achieve only 10% of full native speed because that's how fast the emulator is.  When 
100% of the code is native, we naturally will run at 100% of native speed.  But as the graph 
shows, the relationship in between these two extremes is distinctly 



Apple Confidential -- Need to Know
nonlinear.  At first, lots of code can be running native but the performance improvement will be 
minimal because of the dominant effect of the remaining emulated code, which is running 10x 
slower.  But as the percent native rises, the slope of the graph also rises: the noticeable 
improvement comes near the end, and it occurs relatively suddenly and dramatically.  Amdahl's 
Law is a simple but inescapable mathematical fact: we need to have most of the code being 
executed native in order to see any speedup.

Amdahl's Law

% Native Code

% Native Performance

0%

20%

40%

60%

80%

100%

0% 5%10%15%20%25%30%35%40%45%50%55%60%65%70%75%80%85%90%95%100%

There are several important points to make about the Amdahl graph:

1. The x-axis is a measure of code being executed, not a static measure of the percent of the 
code ported native.  The 90/10 rule, which many studies have shown applies to Macintosh, 
tells us that by porting the most frequently used portions of the toolbox, we can achieve 
substantially more than n% native execution even though only n% of the code base has been 
ported.  This is the good news.

2. Unfortunately, the graph ignores the effects of the mixed-mode overhead, which is the cost of
the transition between native and emulated execution modes.  The roundtrip mixed-mode 
transition cost is roughly 50 emulated, or 500 native, instructions.  Although for long-path 
routines the cost of this transition is insignificant, if a short subroutine is in the wrong mode 
the mixed-mode overhead dominates and can cause up to a  50000% slowdown (native code 
calling a one-instruction emulated subroutine)!  So our actual performance, when %native is 
greater than 0% but less than 100%, will 



Apple Confidential -- Need to Know
always be less than Amdahl's Law predicts.  This is the bad news, though we have several 

strategies than can minimize the mixed-mode penalty (see below.)

3. Ignoring the mixed-mode overhead for now, we see that a 66MHz PDM (4x Quadra 
performance running 100% native) will have to run at 25% of full native performance to 
achieve parity with the Quadra 700.  The graph tells us that to achieve this, about 70% of the 
code being executed will have to be native.  Thus emulated apps that spend less than 70% of 
their time in the toolbox cannot run as fast overall as on a Quadra.

STRATEGY

So how do we move far enough to the right on the Amdahl curve to achieve our performance 
goals?  Our strategy capitalizes on three basic insights:

1. The 90/10 rule.  We win big by porting those few routines that account for the bulk of the 
execution time, such as BlockMove and the various QuickDraw inner loops.  The PEG 
profiling data, which we have reconfirmed numerous times with other studies, shows that 
Mac traces are indeed subject to this phenomena.  The 90/10 rule suggests the domains where
we can profitably focus our limited porting resources.

2. Call-chain completion.  Its not enough to just port the major loops in the selected domains.  
We're finding that in practice, nearly all of them make many calls to other, short subroutines. 
Because these subroutines are very short, they don't show up in the original profiles we used 
to select the domains.  But because of the mixed-mode overhead, once the main loop is 
native the 50000% effect quickly makes those short subroutines very important.  Thanks to 
Jim Gochee for crystalizing our thoughts here.  We need to identify and port the entire call-
chain in the important paths through the ported domains.  Jim has written several tools to 
help us analyze these paths and identify the routines that need to be ported.

3. Dual implementations.  OK, so we must port some short subroutines too, just because they're 
called from the 90/10 domains in critical places.  This introduces another problem: when 
emulated apps call those same short subroutines directly (ie, from emulated code, rather than 
from native code), the mixed-mode penalty again occurs.  Calling short subroutines that 
require a mixed-mode transition is always to be avoided.  Unfortunately, many of the short 
routines we know we need to port for call-chain completion are also called a lot from 
emulated code.  The solution is to have two implementations, one native and one emulated.  
See below.

Here's the strategy we'll keep iterating until we reach our goals (or we run out of time):

a. For both native and emulated applications, we'll use the Marketing user scenarios to identify 
workloads that we want to run fast.   Our resources and time are both limited, so its very 
important to be selective and concentrate our attention to maximize the impact of our efforts. 
Most applications used as a metrics are part of Evangelism's "InsideTrack" program and have
been identified as being critical for the PowerPC targeted customers.  Futhermore these 
scripts have been defined to reflect the way average people are using these applications.

b. Profile the targeted workloads, using ASP and MacsTime, to identify the target domains 



Apple Confidential -- Need to Know
where the bulk of the execution time is concentrated.  Hopefully, the 90/10 rule applies.



Apple Confidential -- Need to Know
c. Using Jim Gochee and Marianne Hsiung's call chain analysis tools, identify those subroutines

in the target domains that need to be ported.  We need to get almost all of them, or we'll slip 
to the left on the Amdahl curve and performance will suffer.

d. Port.  We have several options here, see below.

e. Measure results and iterate until done.  For example, rerun the VU scripts.  If we've met our 
goals, or run out of time, we're done.  Else go back to step (a) and start over again.  This isn't 
an infinite loop because eventually 100% of the code will be ported.

We need to educate developers, both internal and external, about what we are porting and thus 
what they can expect will run fast and what will not.  We expect this to be an interactive process, 
as developers educate us (for example, in Kitchens) about what they need to be fast.  

PORTING OPTIONS

Once we identify routines that need to be ported, there are several options:

1. Rewrite in C if necessary, then recompile.  This is our first choice, especially if the code is in 
C already.

2. Use FlashPort.  Although not a long-range solution, FlashPort could be a very valuable way 
to quickly port code with minimum risk of introducing algorithmic bugs.  We're tracking 
FlashPort's progress carefully;  Brian Topping, Kristin Webster, and John Mitchell have made
several trips to New Jersey, and we try out each release.  D4 contains a FlashPorted Resource
Manager.  At present we remain skeptical of FlashPort's utility, but we are ready to use it if 
feasible.

3. Use MicroAPL.  Although Brian Topping did an early evaluation of their assembly language 
translator before it was finished, as yet we have no real experience with actual use.  We hope 
to free up an engineer in Brian Heaney's team to try it out soon.

No matter how a routine is ported, we have another orthogonal choice: how to package the 
ported implementation.  Once again, there are three alternatives:

1. Native-only.  Long-path-length routines, such as the QuickDraw blit loops, need only be 
native because even if they are called from emulated code, the mixed-mode penalty can be 
amortized over the long execution time.

2. Fat traps.  Recall that the mixed-mode penalty is about 50 emulated instructions; for routines 
with paths not much longer than this, porting them will actually be slower.  As described 
above, we will need to port short routines nonetheless, if they are called from other native 
code, such as native apps or the main target-domains such as QuickDraw.  We have extended 
mixed-mode to include the notion of a fat trap, containing two implementations of the same 
code.  With a fat trap, mixed mode can choose to execute the version in the same mode as its 
caller, thus avoiding the majority of the mixed-mode penalty.  Fat traps preserve full 
SetTrapAddress semantics, although they don't entirely avoid mixed mode overhead.  We 
plan to support fat traps by Alpha.



Apple Confidential -- Need to Know

3. Independent dual implementations.  In some cases, especially very short traps that are 
frequently called, even the minimal mixed-mode overhead imposed by fat traps may be too 
great.  In this case, we can install the native implementation of the trap directly in 



Apple Confidential -- Need to Know
the native glue library, or in a separate DLL, so that it can be called directly by native code.  This

entirely avoids mixed mode and thus incurs no penalty whatsoever.  However, this solution 
does not preserve trap patching semantics.  Scott Boyd is investigating the implications of 
breaking SetTrapAddress;  we believe there are some routines that essentially are never 
patched, for which the risk may be justified.  In other cases it will be necessary to use fat 
traps.

PROGRESS TO DATE

D4 contains the following accelerations.  These comprise most of the obvious candidates 
originally identified by the PEG ASP analysis.

• A-Trap dispatching (in the emulator, by Gary Davidian)
• SANE (emulator)
• BlockMove (emulator)
• QuickDraw.  This work is being done by Tim Cotter with help from Steve Johnson, among 

others.
• DrawText, by Jim Gochee
• FMSwapFont, by Jeff Cobb
• the Resource Manager (using FlashPort), by Brian Topping

These implement three major "domains": Quickdraw, the text rendering mechanism, and the 
resource manager.  We have not yet run the VU scripts against D4, which has just been built.  But
we believe, based on experience with several native apps such as Tim Nichol's "DiaTim" and 
Visual Sort, that we will not experience a major speedup from the above accelerations until we 
finish porting the entire call chains.  Jim Gochee has made substantial progress analyzing call 
chains in the above domains, we have a prioritized list of the traps that need to be ported (as well
as those that already have), and we've already done most of the work, which will be ready for the
Alpha candidate build, if not D5.  Because filling in the call chain mostly involves porting short 
routines, the work goes fairly quickly once one is familiar with the build and development 
environments. 

Gary Davidian has a few ideas for further speedups in the emulator, for instance special casing 
common code bursts such as are emitted by compilers in procedure entry/exit sequences, but we 
don't expect these to achieve more than a few percent speedup in emulation.  The big wins have 
to come in porting -- ie, we have to move to the right on the Amdahl curve, rather than hoping to 
raise the baseline.

Once the current domains are filled in, assuming we haven't reached our goals the strategy calls 
for looping back to step (a) to reevaluate profile data and identify one or more domains to work 
on next.  In this case, we have a strong suspicion that the memory manager should be the next 
target (although this should be verified, and we need to be careful to think in terms of porting 
routines, not managers.)  Brian Topping is already working with Jeff Crawford to begin porting 
Figment.

OTHER WORK

This has been an  OS-and-toolbox-centric analysis, but there is lots of work going on elsewhere 



Apple Confidential -- Need to Know
that effects V0 performance:

1. IBM: CPU speedups.  It is likely that the final 601 parts will exceed the originally targeted 
50MHz midpoint, which should make it possible to ship faster PDMs.  We've 



Apple Confidential -- Need to Know
had prototypes in the lab running at up to 74MHz (?), though 66 seems more likely to be the 

midpoint of the yield curve.

2. MSD: PDM tuning.  We have several knobs with which to tune PDM, including CPU speed, 
L2 cache, frame buffers, bus speeds, etc.  Everything helps.  Fortunately, hardware tuning is 
largely independent of software acceleration, so we can proceed in full parallel.

3. Somerset: Emulator/cache tuning.  Rich Witek, Casey King, and Gary are investigating a 
redesign of the emulator's data structures, in order to improve its cache characteristics.  This 
is particularly important on the 603, but its possible (though unlikely) that this investigation 
could lead to an improvement in performance on the 601 as well.

4. StarTrek: ported toolbox.  We're working closely with the StarTrek team to be sure that we 
can leverage off each other's porting efforts, as well as to make sure that the APIs supported 
by these two projects differ as little as possible.  Initially, StarTrek is likely to benefit more 
from our code (such as Quickdraw) than vice versa, but in the medium-to-long term the 
opposite should be true.  We believe it is critical to cooperate with StarTrek, and maintain a 
single code base.

5. MSSW: "Go Native" program.  Psychic TV does not include accelerating any of the 
extensions to the system.  Several, such as QuickTime and GX, are natural candidates for 
acceleration.  Indeed, they may be critical in some markets.  The PowerPC program office is 
evangelizing the groups responsible for the extensions to accept the responsibility to "Go 
Native."

ISSUES

Unfortunately, its even harder to schedule software performance than it is function.  We're 
confident that we know how to move to the right on the curve, and cautiously optimistic about 
being able to move "far enough" before Beta.  This optimism in based in part on the assumption 
that, as engineers roll off writing drivers and mixed-mode, etc, they can begin porting in earnest.

There may be a tradeoff between accelerating native applications and minimizing risk and impact
on emulated apps.  We expect that many traps will require porting when called from native code 
-- ie, native apps -- but could be left emulated if called from emulated code.  Fat traps and 
"independent" implementations make it possible to serve both needs, but involve quality and 
schedule risks.

The major issue is that we believe that it will be much easier to port code, especially if we use 
FlashPort or output from StarTrek, than it is to test it.  In many cases, even though porting won't 
introduce new functionality, test tools don't exist and will have to be written.  There will be very 
real tradeoffs between performance, risk, and quality.  We don't believe existing quality resources
are anywhere near adequate to support the amount of porting it will take to meet our performance
goals.  Initial estimates indicate that we're short about eight quality engineers within Psychic TV. 
This is currently a top priority issue for Psychic TV.



Apple Confidential -- Need to Know
Attached is an example of performance data generated by the VU scripts.  This example shows 
execution times of the ClarisWorks script (smaller is better), using D4 software on a 66MHz 
EVT1.  Times on a IIci and a Quadra 700 are also shown for comparison.  Recall that the goal for
emulated apps is Quadra performance.

Saving
@!@BigDoc.WP.MWII

Opening
@!@BigDoc.WP.MWII

Rotate 500 rectangles

View Percent - 8%

Saving
@!@BigDoc.Graphic

Opening
@!@BigDoc.Graphic

FillDown

Sort

InsertCells

UndoInsertCells

View Percent - 8%

Saving
@!@BigDoc.SS.SYLK

Opening
@!@BigDoc.SS.SYLK

FindChange

SortRecords

Saving
@!@BigDoc.db.SYLK

Opening
@!@BigDoc.db.SYLK


